Nonlocal vibration and buckling of two-dimensional layered quasicrystal nanoplates embedded in an elastic medium

نویسندگان

چکیده

Abstract A mathematical model for nonlocal vibration and buckling of embedded two-dimensional (2D) decagonal quasicrystal (QC) layered nanoplates is proposed. The Pasternak-type foundation used to simulate the interaction between elastic medium. exact solutions frequency critical load 2D QC are obtained by solving eigensystem using propagator matrix method. present three-dimensional (3D) solution can predict correctly nature frequencies loads as compared with previous thin-plate medium-thick-plate theories. Numerical examples provided display effects quasiperiodic direction, length-to-width ratio, thickness nanoplates, parameter, stacking sequence, medium elasticity on nanoplates. results show that direction depend ratio nanoplate surrounding be adjusted optimal nanoplate. This feature useful since QCs coating materials plate structures now tuned one desire.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Thermal vibration analysis of double-layer graphene embedded in elastic medium based on nonlocal continuum mechanics

This paper presents the thermal vibration analysis of double-layer graphene sheet embedded in polymer elastic medium, using the plate theory and nonlocal continuum mechanics for small scale effects. The graphene is modeled based on continuum plate theory and the axial stress caused by the thermal effects is also considered. Nonlocal governing equations of motion for this double-layer graphene s...

متن کامل

Thermal vibration analysis of double-layer graphene embedded in elastic medium based on nonlocal continuum mechanics

This paper presents the thermal vibration analysis of double-layer graphene sheet embedded in polymer elastic medium, using the plate theory and nonlocal continuum mechanics for small scale effects. The graphene is modeled based on continuum plate theory and the axial stress caused by the thermal effects is also considered. Nonlocal governing equations of motion for this double-layer graphene s...

متن کامل

Levy Type Solution for Nonlocal Thermo-Mechanical Vibration of Orthotropic Mono-Layer Graphene Sheet Embedded in an Elastic Medium

In this paper, the effect of the temperature change on the vibration frequency of mono-layer graphene sheet embedded in an elastic medium is studied. Using the nonlocal elasticity theory, the governing equations are derived for single-layered graphene sheets. Using Levy and Navier solutions, analytical frequency equations for single-layered graphene sheets are obtained. Using Levy solution, the...

متن کامل

thermal vibration analysis of double-layer graphene embedded in elastic medium based on nonlocal continuum mechanics

this paper presents the thermal vibration analysis of double-layer graphene sheet embedded in polymer elastic medium, using the plate theory and nonlocal continuum mechanics for small scale effects. the graphene is modeled based on continuum plate theory and the axial stress caused by the thermal effects is also considered. nonlocal governing equations of motion for this double-layer graphene s...

متن کامل

Study the Surface Effect on the Buckling of Nanowires Embedded in Winkler–Pasternak Elastic Medium Based on a Nonlocal Theory

Nano structures such as nanowires, nanobeams and nanoplates have been investigated widely for their innovative properties. In this paper the buckling of nanowires surrounded in a Winkler - Pasternak elastic medium has been examined based on the nonlocal Euler-Bernoully model with considering the surface effects. In the following a parametric study that explores the influence of numerous physica...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Applied Mathematics and Mechanics-english Edition

سال: 2021

ISSN: ['0253-4827', '1573-2754']

DOI: https://doi.org/10.1007/s10483-021-2743-6